My research interests concern geometric modeling based on fractal geometry. Some geometric models use recursivity as an underlying process. This is the case for Bézier, B-splines and sudivision surfaces. Most of recursive methods can be formulated in a general way using Iterated Function System (IFS). IFS provide a set of theoritical tools for convergence, evaluation, control and approximation. They were firstly introduced for fractal modeling. We used them to model surfaces with rough and smooth aspects or objects with lacunarity. Our goal is to develop an “iterative geometric modeler” to access to a new set of shapes in a Computer Aided Design context. We study the fundamental properties used in CAD systems like topology, differentiability,…, in order to adapt the CAD operators or to generalize them to this type of objects.
- identite:
- GENTIL Christian
- statut_:
- a:1:{i:0;s:2:"PU";}
- equipe:
- Modélisation Géométrique
- fonction:
- a:1:{i:0;s:20:"enseignant chercheur";}
- adresse_postale:
- Bât Science de l’ingénieur - aile G - bureau 217 9 avenue Alain Savary 21000 DIJON
- telephone:
- (+33) 3 80 39 58 80
- localisation:
- Bât Science de l’ingénieur aile G bureau 217Bât Science de l’ingénieur aile G bureau 217
- courriel:
- christian.gentil@ubfc.fr
- url_site_perso_ou_professionnel_:
- http://le2i.cnrs.fr/Christian-Gentil
- travaux_de_recherche_passes:
- enseignements_dispenses:
- autres_activites:
- photo_de_profil:
- 142
- statut:
- a:1:{i:0;s:2:"PU";}
- url_site_perso_ou_professionnel:
- kc_data:
- a:8:{i:0;s:0:"";s:4:"mode";s:2:"kc";s:3:"css";s:0:"";s:9:"max_width";s:0:"";s:7:"classes";s:0:"";s:9:"thumbnail";s:0:"";s:9:"collapsed";s:0:"";s:9:"optimized";s:0:"";}
- kc_raw_content: